Substrate effects on the strain relaxation in GaN/AlN short-period superlattices
نویسندگان
چکیده
We present a comparative study of the strain relaxation of GaN/AlN short-period superlattices (SLs) grown on two different III-nitride substrates introducing different amounts of compensating strain into the films. We grow by plasma-assisted molecular beam epitaxy (0001)-oriented SLs on a GaN buffer deposited on GaN(thick)-on-sapphire template and on AlN(thin)-on-sapphire template. The ex-situ analysis of strain, crack formation, dislocation density, and microstructure of the SL layers has established that the mechanism of strain relaxation in these structures depends on the residual strain in substrate and is determined mainly by the lattice mismatch between layers. For growth on the AlN film, the compensating strain introduced by this film on the layer prevented cracking; however, the densities of surface pits and dislocations were increased as compared with growth on the GaN template. Three-dimensional growth of the GaN cap layer in samples with pseudomorphly grown SLs on the AlN template is observed. At the same time, two-dimensional step-flow growth of the cap layer was observed for structures with non-pseudomorphly grown SLs on the GaN template with a significant density of large cracks appearing on the surface. The growth mode of the GaN cap layer is predefined by relaxation degree of top SL layers.
منابع مشابه
Mechanism of strain-influenced quantum well thickness reduction in GaN/AlN short-period superlattices.
We report on the mechanism of strain-influenced quantum well (QW) thickness reduction in GaN/AlN short-period superlattices grown by plasma-assisted molecular beam epitaxy. Density functional theory was used to support the idea of a thermally activated exchange mechanism between Al adatoms and Ga surface atoms that is influenced by the strain state of the GaN QWs. These ab initio calculations s...
متن کاملThe Peculiarities of Strain Relaxation in GaN/AlN Superlattices Grown on Vicinal GaN (0001) Substrate: Comparative XRD and AFM Study
Superlattices (SLs) consisting of symmetric layers of GaN and AlN have been investigated. Detailed X-ray diffraction and reflectivity measurements demonstrate that the relaxation of built-up strain in the films generally increases with an increasing number of repetitions; however, an apparent relaxation for subcritical thickness SLs is explained through the accumulation of Nagai tilt at each in...
متن کاملTheoretical study of nitride short period superlattices.
Discussion of band gap behavior based on first principles calculations of electronic band structures for various short period nitride superlattices is presented. Binary superlattices, as InN/GaN and GaN/AlN as well as superlattices containing alloys, as InGaN/GaN, GaN/AlGaN, and GaN/InAlN are considered. Taking into account different crystallographic directions of growth (polar, semipolar and n...
متن کاملQuantum state engineering with ultra-short-period (AlN)m/(GaN)n superlattices for narrowband deep-ultraviolet detection.
Ultra-short-period (AlN)m/(GaN)n superlattices with tunable well and barrier atomic layer numbers were grown by metal-organic vapour phase epitaxy, and employed to demonstrate narrowband deep ultraviolet photodetection. High-resolution transmission electron microscopy and X-ray reciprocal space mapping confirm that superlattices containing well-defined, coherently strained GaN and AlN layers as...
متن کاملInfrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices
GaN and AlN compounds have been proven useful in wide bandgap microelectronics and optoelectronics. Also properties of bulk GaN and AlN have been studied extensively. However, many characteristics of AlGaN/GaN superlattices are not well known. In particular, the properties of phonons have not been determined. In order to determine phonon properties, this study measured infrared reflectivity spe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012